Pt-free solar driven photoelectrochemical hydrogen fuel generation using 1T MoS2 co-catalyst assembled CdS QDs/TiO2 photoelectrode.
نویسندگان
چکیده
The solar-to-hydrogen generation from the TiO2-CdS-ZnS-MoS2 (TCZM) heterointerface was demonstrated. We found that a Pt-free CdS quantum dot-sensitized TiO2 mesoporous electrode with a metallic-type 1T MoS2 co-catalyst resulted in 0.11 ml cm(-2) h(-1) H2 fuel generation in unassisted potential mode, which was strikingly improved to 1.47 ml cm(-2) h(-1) under 1 V applied potential.
منابع مشابه
Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems
Photoelectrochemical (PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electro...
متن کاملDirectly Assembled 3D Molybdenum Disulfide on Silicon Wafer for Efficient Photoelectrochemical Water Reduction
DOI: 10.1002/adsu.201700142 chemical fuels became an alternative path for the search of clean energy sources.[1] Therefore, a diverse class of semiconductor photoelectrodes and nonprecious catalytic materials has been investigated for solar water splitting.[2–5] Only a few semiconductor photocathodes and noble metal-free catalysts showed encouraging solar water splitting performances for hydrog...
متن کاملNear‐Infrared Colloidal Quantum Dots for Efficient and Durable Photoelectrochemical Solar‐Driven Hydrogen Production
A new hybrid photoelectrochemical photoanode is developed to generate H2 from water. The anode is composed of a TiO2 mesoporous frame functionalized by colloidal core@shell quantum dots (QDs) followed by CdS and ZnS capping layers. Saturated photocurrent density as high as 11.2 mA cm-2 in a solar-cell-driven photoelectrochemical system using near-infrared QDs is obtained.
متن کاملHighly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe).
A new approach by inserting a layer of ZnSe QDs was studied to enhance the adsorption of CdS/CdSe QDs resulting in much improved power conversion efficiency. ZnSe, CdS and CdSe QDs were sequentially assembled on a nanocrystalline TiO2 film to prepare a ZnSe/CdS/CdSe sensitized photoelectrode for QD-sensitized solar cell (QDSSC) applications. The results show that the performance of QDSSCs is st...
متن کاملZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
Photoelectrode made of nanocable structure of ZnO nanorods (NR) coated with TiO(2) nanosheets (NSs) was investigated for CdS/CdSe quantum dot co-sensitized solar cells. ZnO NRs prepared solution reaction at 60 °C served as the backbone for direct electron transport in view of the single crystallinity of the ZnO NRs and the high electron mobility of ZnO semiconductor. Anatase TiO(2) NSs with the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 51 3 شماره
صفحات -
تاریخ انتشار 2015